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Abstract
We reply to a recent comment by Diehl and Shpot (2001 J. Phys. A: Math. Gen.
34 9101) criticizing our paper (Albuquerque L C and Leite M M 2001 J. Phys.
A: Math. Gen. 34 L327). We show that the approximation we use for evaluating
higher loop integrals is consistent with homogeneity. A new renormalization
group approach is presented in order to compare the two methods with high-
precision numerical data concerning the uniaxial case. We stress that isotropic
behaviour cannot be obtained from anisotropic behaviour.

PACS numbers: 75.40.−s, 75.40.Cx, 64.60.Kw

In a recent paper Diehl and Shpot [1] (DS) criticized a method proposed earlier in [2] to
calculate the critical exponents νL2, ηL2, and γL at order O(ε2

L) for systems presenting an
m-fold Lifshitz point. Working entirely in momentum space we perform the calculations by
using normalization conditions along with dimensional regularization. The symmetry point,
used to define the renormalized theory, was chosen by setting the external momenta scale
along the quartic (competing) directions equal to zero, while keeping the external momenta
scale along the quadratic directions. A detailed account of this approach was given in the
second paper of [2] for the uniaxial (m = 1) case.

In momentum space the most general solution to Feynman integrals involving quadratic
and quartic external momenta scale subspaces perpendicular to each other is a difficult task,
even at the one-loop level. Indeed, the one-loop integral I2 contributing to the coupling constant
can be performed exactly only if the external quartic momenta are set to zero. Keeping both
external momenta scales, one can solve the integral over the quadratic momenta as a function of
the external quadratic momenta, by choosing Schwinger parameters, for instance. The integral
over the quartic momenta cannot be obtained as a function of the quartic external momenta in
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a closed form. Setting the quartic external momenta to zero simplifies the problem, since this
integral will contribute with a simple factor to the remaining parametric integrals, which can
be solved in a straightforward manner. Absorbing a convenient geometric angular factor, the
result can be cast in a form which resembles the ordinary φ4 theory, with εL replacing ε and a
slightly different coefficient for the regular term in εL. The result is a homogeneous function
of the quadratic external momenta scale.

The parametric integrals play an interesting role in our approximation. To see this,
consider the simplest two-loop integral contributing to the two-point function, namely I3(p, k′)
given by

I3(p, k
′) =

∫
dd−mq1 dd−mq2 dmk1 dmk2(

q2
1 +

(
k2

1

)2
) (
q2

2 +
(
k2

2

)2
) [
(q1 + q2 + p)2 +

(
(k1 + k2 + k′)2

)2
] . (1)

Setting k′ = 0, the integral can be evaluated as outlined in [2]. Before making our
approximation, one can choose to integrate first either over the loop momenta (q1, k1) or over
(q2, k2). The loop integrals to be integrated first are referred to as the internal bubbles. By
solving the integral over q2 first, we obtain

I3(p, 0) = 1

2
Sd−m�
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) ∫
dd−mq1dmk1
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(
k2

1

)2

×
∫ ∞

0
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2 exp

(
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α1 + α2
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×
∫

dmk2e−α1

(
k2

2
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e−α2

(
(k1+k2)

2
)2

. (2)

Now we can consider the approximation. In order to integrate over k2, we have to expand
the argument of the last exponential. This will produce a complicated function of α1, α2, k1

and k2. Unfortunately, this function has no elementary primitive. Considering the remaining
terms as a damping factor to the integrand, the maximum of the integrand will be either at
k1 = 0 or k1 = −2k2. (The most general choice k1 = −αk2 yields a hypergeometric function.)
The choice k1 = −2k2 implies that k1 varies in the internal bubble, but not arbitrarily. Its
variation, however, is dominated by k2 through this constraint,which eliminates the dependence
on k1 in the internal bubble. At these values of k1, the integration over k2 produces a simple
factor to the parametric integral proportional to (α1 + α2)

−m
4 . This allows one to perform

the remaining parametric integrals in a simple way. Thus, the constraint is designed to
preserve the form of the parametric integrals. After realizing these integrals, they produce the
factor ((q1 +p)2)−εL/2. Note that the diagrams I3 and I5 contributing to the two-point function
receive the factor 1

2−m
4

after integrating over the quadratic momenta in the external bubble.
This factor will not be present in the isotropic case, since there is no integration over quadratic
momenta to be done in this case. The resulting solution to I3( p, 0) is a homogeneous function
of the external momenta p, not a generalized homogeneous function, given by

I3 = −(p2)1−εL 1

8 −m
1

εL

[
1 +

(
[i2]m +

3

4 − m
2

+ 1

)
εL

]
. (3)

The implementation of this constraint on higher loop integrals proceeds analogously.
The constraint turns all these integrals into homogeneous functions of the external quadratic
momenta scale. One can then choose the symmetry point as p2 = κ2

1 , for example, in order
to define the renormalized vertices via normalization conditions. The normalization constants
Zφ(κ1), Zφ2(κ1) and the beta function are defined in [2], which give origin to the exponents νL2

and ηL2 (under the momentum flow in the scale κ1), along with all the scaling relations relative
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to exponents perpendicular to the competing axes [3]. This follows in complete analogy to the
usual φ4 theory describing the Ising model. As the constraint is based on a physical principle
(homogeneity), we do not agree that the approximation is unacceptable.

Actually, we agree that the speculation made in [2] (“ . . . suggests that calculations
performed in momentum space and coordinate space are inequivalent, as far as the Lifshitz
point is concerned”) was unfortunate. The DS study was the first one to extend the treatment
for the m = 2, 6 cases to general m by making use of the scaling form of the free propagator in
coordinate space representation. However, this does not give them support for their speculation
that ‘there is no way that ALs and our calculation can be both correct’. In the following we
shall outline a new renormalization approach in momentum space of this problem using two
independent fixed points, which is different from the DS treatment using only one fixed point
and will help the subsequent discussion.

So far, we have obtained half the solution to the problem, as we still have to devise a
method to calculate the critical exponents along the competing axes. We follow a suggestion
made by Wilson in the early 1970s [4] in order to obtain these exponents independently
of those perpendicular to the competition axes. We can consider another independent set
of normalization conditions defined at zero-quadratic external momenta and non-vanishing
quartic external momenta scale κ2 [3]. At the Lifshitz point, the free propagator has only
quartic momenta along the competition axes. Thus, it is possible to perform a dimensional
redefinition of the m-dimensional subspace by considering the associated quartic momenta
to have half the dimension of a conventional momentum scale. As a consequence, the term
in the bare Lagrangian which is proportional to the quartic momenta does not need to be
multiplied by another dimensionful normalization constant (σ 0) in order to be meaningful on
dimensional grounds. Under a flow in κ2 at the corresponding fixed point, the normalization
constantsZφ(κ2),Zφ2(κ2) lead to the critical exponentsηL4, νL4 and new scaling laws along the
competing axes, which are independent of those obtained in the subspace perpendicular to the
competition directions. In this case, in order to evaluate loop integrals we use approximations
which preserve the homogeneity of the Feynman integrals in the external quartic momenta
scale κ2, such that scaling theory is fulfilled. Specifically, consider the one-loop integral
I2(0, P)

I2(0, P ) =
∫

dd−mqdmk

(((k + P)2)2 + q2)((k2)2 + q2)
. (4)

The simplest approximation for this integral which preserves homogeneity in the quartic
external momenta scale is ((k + P)2)2 = ((k)2)2 + ((P )2)2. Of course, more involved
approximations can be developed which preserve homogeneity, but we concentrate on
this approximation for the sake of simplicity. The result for this integral is I2(0, P ) =
(((P )2)2)−εL/2 1

εL
(1+[i4]mεL), where the geometric angular factor 1

2�
(
m
4

)
�

(
2−m

4

)
Sd−mSm has

been absorbed in a redefinition of the coupling constant, and [i4]m = 1
2

[
1+ψ(1)−ψ (

2 − m
4

) ]
.

This result reflects the independent infrared divergence of this integral on the external momenta
scale along the competition axes. The beta function for this case, β(u) = −2εL

(
∂ ln u0
∂u

)
κ2

, is
different (and independent) from the one associated with critical exponents perpendicular to
the competition axes, even though both have the same fixed point at one-loop level. It can be
easily checked that at the one-loop νL4 = νL2

2 . Thus, homogeneity is the guiding principle
for obtaining the solution to arbitrary loop integrals as a function of κ2. The resulting scaling
relations for the exponents associated with the correlations perpendicular to the competing
axes are independent of those ones along the competition axes.

The renormalization group just described can be adapted to treat the isotropic behaviour
m = d close to 8. However, the isotropic case is intrinsically different from this renormalization



1810 Comment

group perspective. There is only one momenta scale κ2 and just one set of normalization
conditions. The beta functionβ(u) = −εL

(
∂ lnu0
∂u

)
κ2

is half the value of the function associated
with the κ2 characterizing the competing directions in the anisotropic case. They are different,
since the coupling constants in both cases have different canonical dimension. Technically,
the isotropic loop integrals do not receive contributions from the parametric integration over
the quadratic momenta subspace, for they are absent in this case. That is why the results
of the anisotropic behaviour described in [2] cannot be extended to the isotropic one. The
isotropic behaviour has its own scaling relations, which are independent of those concerning
the correlations along the competition axes for the anisotropic case [3].

We can now analyse the previous RG formalisms possessing only one independent
momenta scale for the anisotropic case. The first modern treatment in terms of 1PI vertex
parts was given by Mergulhão and Carneiro [5]. There they set up the formalism in terms
of normalization conditions in momentum space. They chose the symmetry point at non-
vanishing quartic external momenta and zero quadratic external momenta as well as two
conditions for the derivative of the two-point function at two independent external momenta
scales. This reproduces the earlier scaling relations derived by Hornreich et al [6]. They went
to coordinate space in order to calculate the exponents for the cases m = 2, 6. The novel feature
of this approach is the introduction of an additional normalization constantσ 0, needed to obtain
the exponents νL4, ηL4, etc. In [7], DS followed this treatment entirely in coordinate space
in order to extend the formalism to the general m-fold behaviour. They introduced another
normalization constant ρ0 in order to treat the cross-over and identified the critical exponents
using the renormalization group in coordinate space. The semi-analytical coefficients in the
εL-expansion are integrals (generalized homogeneous functions) to be performed numerically
in coordinate space. These numerical integrals only make sense if one splits the integration
limits on the variable v = σ0x‖x⊥ using the scaling and related functions in the coordinate
space representation in the integrand up to the maximum value of |v| at |v0| = 9.3, and
replacing the asymptotic value of these functions for greater values of v [7]. This numerical
approximation is needed in order to obtain a reasonable numerical value for the exponents ηL2

and ηL4 at O(ε2
L). Otherwise, the generalized homogeneous functions in the integrand are not

suitable to describe properly the coefficients of the εL-expansion. They calculated I2 and I3

along these lines in [7].
After that, DS went to momentum space in order to calculate the two-loop integral

I4(Q,K) using dimensional regularization along with minimal subtraction [8]. They used a
mixed treatment, calculating some integrals in momentum space, going to coordinate space
whenever it was convenient (and vice versa) and making use of a scaling function (defined in
equation (8) of [8]). The integral I2 is a subdiagram of I4, depending on two external momenta
scales as well. Nevertheless, they fixed the quartic external momenta scale to be zero and
concluded that I4 does not depend on it for general values of the quartic external momenta
scale. Indeed, according to equation (B.14) of [8]

(
εL = 4 + m

2 − d)

I4(Qe⊥,K) = F 2
m,εL

Q−2εL

2εL

[
1

εL
+ Ju(m) + O(εL)

]
. (5)

This happens to be incomplete. The problem can be traced back to the calculation of the
one-loop integral

I2(P⊥,K ′
‖) =

∫
dd−mqdmk

((k +K ′)4‖ + (q + P)2⊥)(k
4
‖ + q2

⊥)
. (6)
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They only computed this integral for vanishing external momenta along the quartic direction
(K ′

‖ = 0). In this case, one has

I2(P⊥,K ′
‖ = 0) = (P 2)−εL/2 I2(e⊥). (7)

However, by setting P⊥ = 0, and keepingK ′
‖ different from zero, we have from the discussion

following equation (4):

I2(P⊥ = 0,K ′e‖) = (K ′4)−εL/2I2(e‖) (8)

We stress that I2(e‖) and I2(e⊥) are different functions in general. One can choose them to
have the same leading singularities (the multiplicative factor is absorbed in a redefinition of
the coupling constant anyway), the difference appearing in the regular terms in εL. In fact, the
complete integral I2 depends on these two momenta scales.

We recall that in a proper minimal subtraction procedure, all the external momenta should
be kept arbitrary [9]. DS did not take into account this fact to proceed with the minimal
subtraction, rather keeping only the quadratic external momentaQe⊥ in I4 and P⊥ in I2, and
setting the quartic external momenta to zero in these integrals. They should show how the
necessary cancellations of poles take place along the quartic subspace as well in order to
have a satisfactory minimal subtraction scheme. In fact, the cancellations along the quadratic
directions actually work when one fixes the quartic external momenta to zero. Even though
this procedure is not complete, one can accept it as a new type of minimal subtraction for this
problem.

For the anisotropic case, the DS method is based on one fixed point and the (almost
exact) numerical integration for two-loop integrals which appear as the coefficients of the
εL-expansion using coordinate space representations whenever it is convenient. On the other
hand, the method developed in [3] (and discussed here) in momentum space utilizes two fixed
points. This new method states that there are four independent critical exponents (instead of
three) with two independent sets of scaling laws relating exponents along the quadratic and
quartic directions in each subspace separately. We use an approximation, namely the constraint
relating loop momenta in internal and external subdiagrams, which yields analytical results
for higher loop integrals.

A comparison of the two methods with numerical results for the exponents associated
with perpendicular correlations to the competing axes (labelled with the subscript L2 after [3])
is in order. For the m = 1, d = 3, N = 1 case, DS found using MATHEMATICA: νL2 = 0.71,
γ L2 = 1.40. This is consistent with the newest Monte Carlo simulations for γ L2 = 1.36 ± 0.03
[10], and compatible with an earlier Monte Carlo study (1.40± 0.06) [11]. On the other hand,
our approximation yielded νL2 = 0.73 and γ L2 = 1.45 [2]. When using the new hyperscaling
relation obtained in [3] for the specific heat exponent, namely 2 − αL2 = (

d − m
2

)
νL2 and

replacing the value νL2 = 0.73, we obtain αL2 = 0.175, while the most recent Monte Carlo
calculation is αL2 = 0.18 ± 0.02 [10]. On the other hand, using the value obtained by DS νL2 =
0.71 in the new hyperscaling relation, we find αL2 = 0.225. We can proceed and analyse the
new scaling law obtained in [3] for the magnetization exponentβL2 = 1

2νL2
((
d− m

2

)−2+ηL2
)
.

Our calculation yields βL2 = 0.198, whereas the simulation result is βL2 = 0.238 ± 0.005.
Using DS results for νL2 and ηL2 inside this new scaling relation one finds βL2 = 0.192. The
high-precision numerical values [10] are in very good agreement with the two-loop results
using our approximation, which we believe cannot be said to be ‘unacceptable’ at this point.
The very similar values obtained for the exponents using either DS or our two-loop calculations
confirms that momentum and coordinate space calculations should give the same results, since
either our approximation or the DS numerical approximation is responsible for a rather small
deviation in the two results when compared to the above numerical output.
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Finally, we emphasize the failure of the DS method to treat the isotropic behaviour. As
was pointed out in [2] and explained in this work, νL2 and ηL2 are not valid for the isotropic
(m = 8) case. At the Lifshitz point, only the momenta scale along the competing axes is
meaningful for the isotropic case. Hence one has to start from scratch using this momenta
scale, which is incompatible with our choice of normalization conditions. DS calculated I2

and I4 along the components of quadratic external momenta only. But this momenta scale
makes no sense for the m = 8 case at the Lifshitz point, since they are not present any longer.
In that case the fixed point should be determined entirely as a function of the quartic external
momenta scale as shown in [3]. There it was found that isotropic behaviour cannot be obtained
from the anisotropic behaviour. This is in contradiction to DS and we conclude that it is most
likely the use of the momentum scale vanishing at m = 8 that led DS to erroneous results.

In conclusion, we have shown that our two-loop results do constitute a very good
approximation for calculating critical indices. Our method proved to be very simple to
give analytical expressions to the exponents. It is based on a renormalization group analysis
consisting of two independent fixed points and is a natural alternative to the DS semi-analytical
approach based on only one fixed point. In view of the comparison with numerical values,
we believe that both methods for the anisotropic cases deserve further investigation in order
to unravel the fascinating issues concerning the Lifshitz critical behaviour.

Acknowledgments

The authors would like to thank B V Carlson for a critical reading of the manuscript and
support from FAPESP, grant numbers 00/03277-3 (LCA) and 00/06572-6 (MML).

References

[1] Diehl H W and Shpot M 2001 J. Phys. A: Math. Gen. 34 9101 (cond-mat/0106502)
[2] Albuquerque L C and Leite M M 2001 J. Phys. A: Math. Gen. 34 L327 (cond-mat/0006462)
[3] Leite M M 2001 Preprint hep-th/0109037
[4] Wilson K G 1975 Rev. Mod. Phys. 47 773
[5] Mergulhão C Jr and Carneiro C E I 1998 Phys. Rev. B 58 6047
[6] Hornreich R M, Luban M and Shtrikman S 1975 Phys. Rev. Lett. 35 1678
[7] Diehl H W and Shpot M 2000 Phys. Rev B 62 12338
[8] Shpot M and Diehl H W 2001 Nucl. Phys. B 612 340 (cond-mat/0106105)
[9] Amit D J 1984 Field Theory, the Renormalization Group and Critical Phenomena (Singapore: World Scientific)

[10] Pleimling M and Henkel M 2001 Phys. Rev. Lett. 87 125702 (hep-th/0103194)
[11] Kaski K and Selke W 1985 Phys. Rev. B 31 3128


